ACADEMIC SESSION: 2022-23 (Summer-2023)

Disc	pline : ELEC	TRICAL ENGINEERING	Semester:	Name of the Teaching Faculty : KIRAN KUMAR BHOI		
			Semester From date: 14/02/2023 to 23/05/2023			
SL	DATE	Conversion-I CHAPTER	THEORY TOPIC NAME		NO.OF PERIODS	
NO.	15.02.23			rinciple of generator, Constructional	1	
1	15.02.25		features of		1	
2	16.02.23		Yoke, Pole 8	field winding, Armature, Commutator		
3	17.02.23		Armature w pitch and commutato	inding, back pitch, Front pitch, Resultant	1	
4	20.02.23		Simple Lap a	and wave winding, Dummy coils.	1	
5	22.02.23		Different type Compound)	pes of D.C. machines (Shunt, Series and	1	
6	23.02.23	DC Generator	Derivation	of EMF equation of DC generators. (Solve	1	
7	24.02.23			efficiency of DC generator. Condition for	1	
8	25.02.23		maximum e numerical p		1	
9	27.02.23		Armature re	action in D.C. machine	1	
10	01.03.23		Commutati	on and methods of improving	1	
11	02.03.23		Role of inter	poles and compensating winding in	1	
12	03.03.23		Characteris	tics of D.C. Generators of different types of D.C. Generators	1	
13	04.03.23		shunt	critical resistance and critical speed of DC	1	
14	06.03.23		generator Conditions	of Build-up of emf of DC generator.	1	
15	09.03.23		Parallel ope	eration of D.C. Generators.	1	
16	10.03.23		Uses of D.C	generators.	1	
17	11.03.23		Basic worki	ng principle of DC motor	1	
18	13.03.23		Significance	of back emf in D.C. Motor.	1	
19	15.03.23	DC Motor		ation of D.C. Motor and condition for	1	
20	16.03.23		solve proble	ower output ems	1	
21	17.03.23		Derive torq	ue equation (solve problems)	1	

22	18.03.23		Characteristics of shunt, series and compound motors and	1
23	20.03.23		Starting method of shunt, series and compound	1
24	22.03.23		Speed control of D.C shunt motors by Flux control method.	1
25	23.03.23		Armature voltage Control method. Solve problems	1
26	24.03.23	DC Motor	Speed control of D.C. series motors by Field Flux control method, Tapped field method and series-parallel method	1
27	25.03.23		Determination of efficiency of D.C. Machine by Brake test method(solve numerical problems)	1
28	27.03.23		Determination of efficiency of D.C. Machine by Swinburne's Test method(solve numerical problems)	1
29	29.03.23		Losses, efficiency and power stages of D.C. motor.	1
30	31.03.23		(solve numerical problems)	1
31	03.04.23		Uses of D.C. motors	1
32	05.04.23		Working principle of transformer.	1
33	06.04.23		Constructional feature of Transformer, Arrangement of core & winding in different types of transformer.	1
34	08.04.23		Brief ideas about transformer accessories such as conservator, tank, breather, and explosion vent etc	1
35	10.04.23		Explain types of cooling methods	1
36	12.04.23	SINGLE PHASE	State the procedures for Care and maintenance.	1
37	13.04.23	Transformer	EMF equation of transformer	1
38	15.04.23		Ideal transformer voltage transformation ratio	1
39	17.04.23		Operation of Transformer at no load, on load with phasordiagrams	1
40	19.04.23		Equivalent Resistance, Leakage Reactance and Impedance oftransformer	1
41	20.04.23		To draw phasor diagram of transformer on load, with winding Resistance and Magnetic leakage with using upf, leading pfand lagging pf load.	1
42	21.04.23		To explain Equivalent circuit and solve numerical problems	1

43	22.04.23		Approximate & exact voltage drop	1
11	24.04.23		calculation of aTransformer. Regulation of transformer.	1
44	24.04.23	SINGLE PHASE	Regulation of transformer.	
45	2004.22	Transformer	Different types of losses in a Transformer. Explain	1
	26.04.23		Open	
			circuit and Short Circuit test	1
46	27.04.23		(Solve numerical problems)	1
47	28.04.23		Explain Efficiency, efficiency at different loads	1
41	20.04.25		and powerfactors	
48	29.04.23		condition for maximum efficiency (solve problems)	1
	01.05.22		Explain All Day Efficiency (solve problems)	1
49	01.05.23		Explain All Day Efficiency (corresponding	
50	03.05.23		Determination of load corresponding to Maximum	1
30	00.00.20		efficiency.	
51	04.05.23		6 Parallel operation of single phase transformer.	1
	00.00.33		6 Parallel operation of single phase transformer.	1
52	06.05.23		Continue.	
53	08.05.23		Chapter 3 question discussion	1
			Constructional features of Auto transformer	1
54	10.05.23		Constructional leadures of Auto transformer	
55	11.05.23		Working principle of single phase Auto Transformer	1
55	11.05.25	Auto Transformer		
56	12.05.23	/tuto manoremen	Comparison of Auto transformer with an two	1
50	12.05.25		windingtransformer (saving of Copper)	
57	13.05.23		Uses of Auto transformer	1
	10.20		Explain Tap changer with transformer (on load and	1
58	15.05.23		off load condition)	
50	17.05.23		Chapter 4 question discussion	1
59	17.03.23			
60	18.05.23		Explain Current Transformer and Potential	1
00			Transformer	-
61	20.05.23	Instrument transformer	Define Ratio error, Phase angle error, Burden.	1
62	22.05.23		Uses of C.T. and P.T.	1
62	22.05.25		TOTAL CLASS	62

Prepared by

Kiran Kumar Bhoi

Lect(Electrical Engg)

GP Sonepur

Head of the Department

(Electrical Engg)

GP Sonepur

Academic co-ordinator

GP Sonepur